$$
% create the definition symbol
\def\bydef{\stackrel{\Delta}{=}}
%\def\circconv{\otimes}
\def\circconv{\circledast}
\newcommand{\qed}{\mbox{ } \Box}
\newcommand{\infint}{\int_{-\infty}^{\infty}}
% z transform
\newcommand{\ztp}{ ~~ \mathop{\mathcal{Z}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\iztp}{ ~~ \mathop{\mathcal{Z}^{-1}}\limits_{\longleftrightarrow} ~~ }
% fourier transform pair
\newcommand{\ftp}{ ~~ \mathop{\mathcal{F}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\iftp}{ ~~ \mathop{\mathcal{F}^{-1}}\limits_{\longleftrightarrow} ~~ }
% laplace transform
\newcommand{\ltp}{ ~~ \mathop{\mathcal{L}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\iltp}{ ~~ \mathop{\mathcal{L}^{-1}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\ftrans}[1]{ \mathcal{F} \left\{#1\right\} }
\newcommand{\iftrans}[1]{ \mathcal{F}^{-1} \left\{#1\right\} }
\newcommand{\ztrans}[1]{ \mathcal{Z} \left\{#1\right\} }
\newcommand{\iztrans}[1]{ \mathcal{Z}^{-1} \left\{#1\right\} }
\newcommand{\ltrans}[1]{ \mathcal{L} \left\{#1\right\} }
\newcommand{\iltrans}[1]{ \mathcal{L}^{-1} \left\{#1\right\} }
% coordinate vector relative to a basis (linear algebra)
\newcommand{\cvrb}[2]{\left[ \vec{#1} \right]_{#2} }
% change of coordinate matrix (linear algebra)
\newcommand{\cocm}[2]{ \mathop{P}\limits_{#2 \leftarrow #1} }
% Transformed vector set
\newcommand{\tset}[3]{\{#1\lr{\vec{#2}_1}, #1\lr{\vec{#2}_2}, \dots, #1\lr{\vec{#2}_{#3}}\}}
% sum transformed vector set
\newcommand{\tsetcsum}[4]{{#1}_1#2(\vec{#3}_1) + {#1}_2#2(\vec{#3}_2) + \cdots + {#1}_{#4}#2(\vec{#3}_{#4})}
\newcommand{\tsetcsumall}[4]{#2\lr{{#1}_1\vec{#3}_1 + {#1}_2\vec{#3}_2 + \cdots + {#1}_{#4}\vec{#3}_{#4}}}
\newcommand{\cvecsum}[3]{{#1}_1\vec{#2}_1 + {#1}_2\vec{#2}_2 + \cdots + {#1}_{#3}\vec{#2}_{#3}}
% function def
\newcommand{\fndef}[3]{#1:#2 \to #3}
% vector set
\newcommand{\vset}[2]{\{\vec{#1}_1, \vec{#1}_2, \dots, \vec{#1}_{#2}\}}
% absolute value
\newcommand{\abs}[1]{\left| #1 \right|}
% vector norm
\newcommand{\norm}[1]{\left|\left| #1 \right|\right|}
% trans
\newcommand{\trans}{\mapsto}
% evaluate integral
\newcommand{\evalint}[3]{\left. #1 \right|_{#2}^{#3}}
% slist
\newcommand{\slist}[2]{{#1}_{1},{#1}_{2},\dots,{#1}_{#2}}
% vectors
\newcommand{\vc}[1]{\textbf{#1}}
% real
\newcommand{\Real}[1]{{\Re \mit{e}\left\{{#1}\right\}}}
% imaginary
\newcommand{\Imag}[1]{{\Im \mit{m}\left\{{#1}\right\}}}
\newcommand{\mcal}[1]{\mathcal{#1}}
\newcommand{\bb}[1]{\mathbb{#1}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\I}{\mathbb{I}}
\newcommand{\Th}[1]{\mathop\mathrm{Th(#1)}}
\newcommand{\intersect}{\cap}
\newcommand{\union}{\cup}
\newcommand{\intersectop}{\bigcap}
\newcommand{\unionop}{\bigcup}
\newcommand{\setdiff}{\backslash}
\newcommand{\iso}{\cong}
\newcommand{\aut}[1]{\mathop{\mathrm{Aut(#1)}}}
\newcommand{\inn}[1]{\mathop{\mathrm{Inn(#1)}}}
\newcommand{\Ann}[1]{\mathop{\mathrm{Ann(#1)}}}
\newcommand{\dom}[1]{\mathop{\mathrm{dom} #1}}
\newcommand{\cod}[1]{\mathop{\mathrm{cod} #1}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\st}{\ |\ }
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\enclose}[1]{\left\langle #1\right\rangle}
\newcommand{\lr}[1]{\left( #1\right)}
\newcommand{\lrsq}[1]{\left[ #1\right]}
\newcommand{\op}{\mathrm{op}}
\newcommand{\dotarr}{\dot{\rightarrow}}
%Category Names:
\newcommand{\Grp}{\mathbf{Grp}}
\newcommand{\Ab}{\mathbf{Ab}}
\newcommand{\Set}{\mathbf{Set}}
\newcommand{\Matr}{\mathbf{Matr}}
\newcommand{\IntDom}{\mathbf{IntDom}}
\newcommand{\Field}{\mathbf{Field}}
\newcommand{\Vect}{\mathbf{Vect}}
\newcommand{\thm}[1]{\begin{theorem} #1 \end{theorem}}
\newcommand{\clm}[1]{\begin{claim} #1 \end{claim}}
\newcommand{\cor}[1]{\begin{corollary} #1 \end{corollary}}
\newcommand{\ex}[1]{\begin{example} #1 \end{example}}
\newcommand{\prf}[1]{\begin{proof} #1 \end{proof}}
\newcommand{\prbm}[1]{\begin{problem} #1 \end{problem}}
\newcommand{\soln}[1]{\begin{solution} #1 \end{solution}}
\newcommand{\rmk}[1]{\begin{remark} #1 \end{remark}}
\newcommand{\defn}[1]{\begin{definition} #1 \end{definition}}
\newcommand{\ifff}{\LeftRightArrow}
<!-- For the set of reals and integers -->
\newcommand{\rr}{\R}
\newcommand{\reals}{\R}
\newcommand{\ii}{\Z}
\newcommand{\cc}{\C}
\newcommand{\nn}{\N}
\newcommand{\nats}{\N}
<!-- For terms being indexed.
Puts them in standard font face and creates an index entry.
arg: The term being defined.
\newcommand{\pointer}[1]{#1\index{#1}} -->
<!-- For bold terms to be index, but defined elsewhere
Puts them in bold face and creates an index entry.
arg: The term being defined. -->
\newcommand{\strong}[1]{\textbf{#1}}
<!-- For set names.
Puts them in italics. In math mode, yields decent spacing.
arg: The name of the set. -->
\newcommand{\set}[1]{\textit{#1}}
$$
\documentclass{article}
\usepackage{latex2html5}
\usepackage{writer}
\usepackage{auto-pst-pdf}
\usepackage{pstricks-add}
\usepackage{graphicx}
\usepackage{hyperref}
\definecolor{lightblue}{rgb}{0.0,0.24313725490196078,1.0}
\title{{\Huge signals notecards}}
\author{
\textbf{Dan Lynch} \\
UC Berkeley \\
EECS Department \\
D@nLynch.com \\
}
\date{1st of December 2012}
\begin{document}
\maketitle
\newpage
\tableofcontents
\newpage
\section{Equations}
\subsection{DFS}
\begin{nicebox}
\begin{align*}
x(n) &= \sum \limits_{k=\langle p\rangle}X_ke^{ik\omega_0n} \quad &\mbox{(synthesis equation)} \\
X_k &= \frac{1}{p} \sum \limits_{n=\langle p\rangle}x(n)e^{-ik\omega_0n} \quad &\mbox{(analysis equation)}
\end{align*}
In DFS, $\omega_0 = 2\pi/p$. Both $X_k, x(n)$ are $p$-periodic in discrete-time.
\end{nicebox}
\subsection{CFS}
\begin{nicebox}
\begin{align*}
x(t) &= \sum \limits_{k=-\infty}^{\infty}X_ke^{ik\omega_0t} \quad &\mbox{(synthesis equation)} \\
X_k &= \frac{1}{p} \int_{\langle p\rangle}x(t)e^{-ik\omega_0t}dt \quad &\mbox{(analysis equation)}
\end{align*}
Because we can write $x(t)$ as an infinite number of $X_k$s, $X_k$ is not necessarily periodic, but $x(t)$ is $p$-periodic in continuous-time.
\end{nicebox}
\subsection{DTFT}
\begin{nicebox}
\begin{align*}
x(n) &= \frac{1}{2\pi} \int_{\langle 2\pi\rangle} X(\omega)e^{i\omega n}d\omega \quad &\mbox{(synthesis equation)} \\
X(\omega) &= \sum \limits_{n=-\infty}^{\infty}x(n)e^{-i\omega n} \quad &\mbox{(analysis equation)}
\end{align*}
$X(\omega)$ is $2\pi$-periodic, but $x(n)$ is not necessarily periodic.
\end{nicebox}
\subsection{CTFT}
\begin{nicebox}
\begin{align*}
x(t) &= \frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{i\omega t}d\omega \quad &\mbox{(synthesis equation)} \\
X(\omega) &= \int_{-\infty}^{\infty}x(t)e^{-i\omega t}dt \quad &\mbox{(analysis equation)}
\end{align*}
Neither $x(t)$ or $X(\omega)$ has to be periodic.
\end{nicebox}
\subsection{Useful Formulae}
The continuous-time fourier series lives in the universe of $p$-periodic functions of a continuous variable $t$.
\begin{nicebox}
$$ \langle f,g\rangle = \int_{\langle p\rangle}f(t)g^*(t)dt $$
\end{nicebox}
The discrete-time fourier transform lives in the universe of $2\pi$-periodic functions of a continuous variable $\omega$.
\begin{nicebox}
$$ \langle F,G\rangle = \int_{\langle 2\pi\rangle }F(\omega)G^*(\omega)d\omega$$
\end{nicebox}
\begin{align*}
X &= \frac{1}{p} \Psi^H x \\
x &= \Psi X
\end{align*}
\begin{align*}
\sum \limits_{n=A}^{B} \alpha^n &= \frac{\alpha^{B+1} - \alpha^A}{1-\alpha} \\
\sum \limits_{n=0}^{\infty} \alpha^n &= \frac{1}{1-\alpha} \\
\end{align*}
\begin{align*}
(x * h) (n) &= \sum \limits_{n = \langle p \rangle} X_\ell H(\ell \omega_0) e^{i\ell \omega_0 n} \\
\end{align*}
\begin{align*}
e^{i\omega_0 n} \to \fbox{H} \to \abs{H(\omega_0)}e^{i(\omega_0 n + \angle H(\omega_0))}
\end{align*}
\subsection{Z-Transforms}
\begin{nicebox}
{\bf Time-Shifting (Translation) Property }
\begin{align*}
x(n - N) &\ztp z^{-N} \hat{X}(z)
\end{align*}
The $RoC$ is the same as $RoC(x)$ except possibly addition or deletion of 0 or $\infty$.
\end{nicebox}
\begin{nicebox}
{\bf Convolution in the Time Domain }
\begin{align*}
x(n) * h(n) &\ztp \hat{H}(z)\hat{X}(z)
\end{align*}
$RoC \supseteq RoC(x) \cap RoC(h)$.
\end{nicebox}
\begin{nicebox}
{\bf Modulation with a Complex Exponential }
\begin{align*}
z_0^n x(n) &\ztp \hat{X}\lr{\frac{z}{z_0}}
\end{align*}
$RoC:\abs{z_0} RoC(x)$
\end{nicebox}
\begin{nicebox}
{\bf Time-Reversal Property }
\begin{align*}
x(-n) &\ztp \hat{X}(z^{-1})
\end{align*}
$RoC : \frac{1}{RoC(x)}$
\end{nicebox}
\begin{nicebox}
{\bf Z-domain Differentiation Property }
\begin{align*}
n x(n) &\ztp -z \frac{d}{dz} \hat{X}(z)
\end{align*}
The $RoC$ is the same as $RoC(x)$ except possibly addition or deletion of 0 or $\infty$.
\end{nicebox}
\begin{nicebox}
{\bf Conjugation Property }
\begin{align*}
x^*(n) &\ztp \hat{X}^*(z^*)
\end{align*}
$RoC = RoC(x)$
\end{nicebox}
\begin{nicebox}
{\bf Dilation }
$$
\begin{cases}
x\lr{\frac{n}{N}} & n\bmod N=0 \\
0 & \mbox{otherwise} \\
\end{cases}
\ztp
\hat{X}(z^N)
$$
$RoC = \sqrt[n]{RoC(x)}$
\end{nicebox}
\subsection{Laplace Transforms}
\begin{nicebox}
{\bf Time-Shifting (Translation) Property }
\begin{align*}
x(t+T) &\ltp e^{sT}\hat{X}(s) \\
\end{align*}
The $RoC$ excludes $\infty$ if the signal is not causal, or excludes $-\infty$ if the signal is not anti-causal.
\end{nicebox}
\begin{nicebox}
{\bf Convolution in the Time Domain }
\begin{align*}
h(t) &= f(t) * g(t) \\
\hat{H}(s) &= \hat{F}(s)\hat{G}(s) \\
\end{align*}
The $RoC(h) \supseteq RoC(f) \cap RoC(g)$.
\end{nicebox}
\begin{nicebox}
{\bf Modulation with a Complex Exponential }
\begin{align*}
e^{s_0 t} x(t) &\ltp \hat{X}(s-s_0) \\
\end{align*}
$RoC = RoC(x) + \Real{s_0} $
\end{nicebox}
\begin{nicebox}
{\bf Integration in the Time Domain }
\begin{align*}
\int_{-\infty}^t x(\tau) d\tau &\ltp \frac{\hat{X}(s)}{s}
\end{align*}
$RoC(y) \supseteq RoC(x) \cap \{ s \st \Real{s} \gt 0 \} $
\end{nicebox}
\begin{nicebox}
{\bf Differentiation in the Time Domain }
\begin{align*}
\frac{d}{dt} x(t) \ltp s\hat{X}(s) \\
\end{align*}
$RoC \supseteq RoC(x)$
\end{nicebox}
\begin{nicebox}
{\bf Generalized Differentiation in the Time Domain }
\begin{align*}
\frac{d^k}{dt^k} x(t) \ltp s^k \hat{X}(s) \quad k \in \N \\
\end{align*}
$RoC \supseteq RoC(x)$
\end{nicebox}
\begin{nicebox}
{\bf Frequency Differentiation }
\begin{align*}
-tx(t) \ltp \frac{d}{ds}\hat{X}(s) \\
\end{align*}
$RoC = RoC(x)$
\end{nicebox}
\begin{nicebox}
{\bf Conjugation Property }
\begin{align*}
x^*(t) &\ltp \hat{X}^*(s^*)
\end{align*}
$RoC = RoC(x)$
\end{nicebox}
\newpage
\bibliographystyle{cell}
\bibliography{sources}
\end{document}