$$
  % create the definition symbol
  \def\bydef{\stackrel{\Delta}{=}}
  %\def\circconv{\otimes}
  \def\circconv{\circledast}
  \newcommand{\qed}{\mbox{ } \Box}
  \newcommand{\infint}{\int_{-\infty}^{\infty}}
  % z transform
  \newcommand{\ztp}{ ~~ \mathop{\mathcal{Z}}\limits_{\longleftrightarrow} ~~ }
  \newcommand{\iztp}{ ~~ \mathop{\mathcal{Z}^{-1}}\limits_{\longleftrightarrow} ~~ }
  % fourier transform pair
  \newcommand{\ftp}{ ~~ \mathop{\mathcal{F}}\limits_{\longleftrightarrow} ~~ }
  \newcommand{\iftp}{ ~~ \mathop{\mathcal{F}^{-1}}\limits_{\longleftrightarrow} ~~ }
  % laplace transform
  \newcommand{\ltp}{ ~~ \mathop{\mathcal{L}}\limits_{\longleftrightarrow} ~~ }
  \newcommand{\iltp}{ ~~ \mathop{\mathcal{L}^{-1}}\limits_{\longleftrightarrow} ~~ }
  \newcommand{\ftrans}[1]{ \mathcal{F} \left\{#1\right\} }
  \newcommand{\iftrans}[1]{ \mathcal{F}^{-1} \left\{#1\right\} }
  \newcommand{\ztrans}[1]{ \mathcal{Z} \left\{#1\right\} }
  \newcommand{\iztrans}[1]{ \mathcal{Z}^{-1} \left\{#1\right\} }
  \newcommand{\ltrans}[1]{ \mathcal{L} \left\{#1\right\} }
  \newcommand{\iltrans}[1]{ \mathcal{L}^{-1} \left\{#1\right\} }
  % coordinate vector relative to a basis (linear algebra)
  \newcommand{\cvrb}[2]{\left[ \vec{#1} \right]_{#2} }
  % change of coordinate matrix (linear algebra)
  \newcommand{\cocm}[2]{ \mathop{P}\limits_{#2 \leftarrow #1} }
  % Transformed vector set
  \newcommand{\tset}[3]{\{#1\lr{\vec{#2}_1}, #1\lr{\vec{#2}_2}, \dots, #1\lr{\vec{#2}_{#3}}\}}
  % sum transformed vector set
  \newcommand{\tsetcsum}[4]{{#1}_1#2(\vec{#3}_1) + {#1}_2#2(\vec{#3}_2) + \cdots + {#1}_{#4}#2(\vec{#3}_{#4})}
  \newcommand{\tsetcsumall}[4]{#2\lr{{#1}_1\vec{#3}_1 + {#1}_2\vec{#3}_2 + \cdots + {#1}_{#4}\vec{#3}_{#4}}}
  \newcommand{\cvecsum}[3]{{#1}_1\vec{#2}_1 + {#1}_2\vec{#2}_2 + \cdots + {#1}_{#3}\vec{#2}_{#3}}
  % function def
  \newcommand{\fndef}[3]{#1:#2 \to #3}
  % vector set
  \newcommand{\vset}[2]{\{\vec{#1}_1, \vec{#1}_2, \dots, \vec{#1}_{#2}\}}
  % absolute value
  \newcommand{\abs}[1]{\left| #1 \right|}
  % vector norm
  \newcommand{\norm}[1]{\left|\left| #1 \right|\right|}
  % trans
  \newcommand{\trans}{\mapsto}
  % evaluate integral
  \newcommand{\evalint}[3]{\left. #1 \right|_{#2}^{#3}}
  % slist
  \newcommand{\slist}[2]{{#1}_{1},{#1}_{2},\dots,{#1}_{#2}}
  % vectors
  \newcommand{\vc}[1]{\textbf{#1}}
  % real
  \newcommand{\Real}[1]{{\Re \mit{e}\left\{{#1}\right\}}}
  % imaginary
  \newcommand{\Imag}[1]{{\Im \mit{m}\left\{{#1}\right\}}}
  \newcommand{\mcal}[1]{\mathcal{#1}}
  \newcommand{\bb}[1]{\mathbb{#1}}
  \newcommand{\N}{\mathbb{N}}
  \newcommand{\Z}{\mathbb{Z}}
  \newcommand{\Q}{\mathbb{Q}}
  \newcommand{\R}{\mathbb{R}}
  \newcommand{\C}{\mathbb{C}}
  \newcommand{\I}{\mathbb{I}}
  \newcommand{\Th}[1]{\mathop\mathrm{Th(#1)}}
  \newcommand{\intersect}{\cap}
  \newcommand{\union}{\cup}
  \newcommand{\intersectop}{\bigcap}
  \newcommand{\unionop}{\bigcup}
  \newcommand{\setdiff}{\backslash}
  \newcommand{\iso}{\cong}
  \newcommand{\aut}[1]{\mathop{\mathrm{Aut(#1)}}}
  \newcommand{\inn}[1]{\mathop{\mathrm{Inn(#1)}}}
  \newcommand{\Ann}[1]{\mathop{\mathrm{Ann(#1)}}}
  \newcommand{\dom}[1]{\mathop{\mathrm{dom} #1}}
  \newcommand{\cod}[1]{\mathop{\mathrm{cod} #1}}
  \newcommand{\id}{\mathrm{id}}
  \newcommand{\st}{\ |\ }
  \newcommand{\mbf}[1]{\mathbf{#1}}
  \newcommand{\enclose}[1]{\left\langle #1\right\rangle}
  \newcommand{\lr}[1]{\left( #1\right)}
  \newcommand{\lrsq}[1]{\left[ #1\right]}
  \newcommand{\op}{\mathrm{op}}
  \newcommand{\dotarr}{\dot{\rightarrow}}
  %Category Names:
  \newcommand{\Grp}{\mathbf{Grp}}
  \newcommand{\Ab}{\mathbf{Ab}}
  \newcommand{\Set}{\mathbf{Set}}
  \newcommand{\Matr}{\mathbf{Matr}}
  \newcommand{\IntDom}{\mathbf{IntDom}}
  \newcommand{\Field}{\mathbf{Field}}
  \newcommand{\Vect}{\mathbf{Vect}}
  \newcommand{\thm}[1]{\begin{theorem} #1 \end{theorem}}
  \newcommand{\clm}[1]{\begin{claim} #1 \end{claim}}
  \newcommand{\cor}[1]{\begin{corollary} #1 \end{corollary}}
  \newcommand{\ex}[1]{\begin{example} #1 \end{example}}
  \newcommand{\prf}[1]{\begin{proof} #1 \end{proof}}
  \newcommand{\prbm}[1]{\begin{problem} #1 \end{problem}}
  \newcommand{\soln}[1]{\begin{solution} #1 \end{solution}}
  \newcommand{\rmk}[1]{\begin{remark} #1 \end{remark}}
  \newcommand{\defn}[1]{\begin{definition} #1 \end{definition}}
  \newcommand{\ifff}{\LeftRightArrow}
  <!-- For the set of reals and integers -->
  \newcommand{\rr}{\R}
  \newcommand{\reals}{\R}
  \newcommand{\ii}{\Z}
  \newcommand{\cc}{\C}
  \newcommand{\nn}{\N}
  \newcommand{\nats}{\N}
  <!-- For terms being indexed.
  Puts them in standard font face and creates an index entry.
  arg: The term being defined.
  \newcommand{\pointer}[1]{#1\index{#1}} -->
  <!-- For bold terms to be index, but defined elsewhere
  Puts them in bold face and creates an index entry.
  arg: The term being defined. -->
  \newcommand{\strong}[1]{\textbf{#1}}
  <!-- For set names.
  Puts them in italics. In math mode, yields decent spacing.
  arg: The name of the set. -->
  \newcommand{\set}[1]{\textit{#1}}
  $$
  
Significant Sets
loading...