$$
% create the definition symbol
\def\bydef{\stackrel{\Delta}{=}}
%\def\circconv{\otimes}
\def\circconv{\circledast}
\newcommand{\qed}{\mbox{ } \Box}
\newcommand{\infint}{\int_{-\infty}^{\infty}}
% z transform
\newcommand{\ztp}{ ~~ \mathop{\mathcal{Z}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\iztp}{ ~~ \mathop{\mathcal{Z}^{-1}}\limits_{\longleftrightarrow} ~~ }
% fourier transform pair
\newcommand{\ftp}{ ~~ \mathop{\mathcal{F}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\iftp}{ ~~ \mathop{\mathcal{F}^{-1}}\limits_{\longleftrightarrow} ~~ }
% laplace transform
\newcommand{\ltp}{ ~~ \mathop{\mathcal{L}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\iltp}{ ~~ \mathop{\mathcal{L}^{-1}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\ftrans}[1]{ \mathcal{F} \left\{#1\right\} }
\newcommand{\iftrans}[1]{ \mathcal{F}^{-1} \left\{#1\right\} }
\newcommand{\ztrans}[1]{ \mathcal{Z} \left\{#1\right\} }
\newcommand{\iztrans}[1]{ \mathcal{Z}^{-1} \left\{#1\right\} }
\newcommand{\ltrans}[1]{ \mathcal{L} \left\{#1\right\} }
\newcommand{\iltrans}[1]{ \mathcal{L}^{-1} \left\{#1\right\} }
% coordinate vector relative to a basis (linear algebra)
\newcommand{\cvrb}[2]{\left[ \vec{#1} \right]_{#2} }
% change of coordinate matrix (linear algebra)
\newcommand{\cocm}[2]{ \mathop{P}\limits_{#2 \leftarrow #1} }
% Transformed vector set
\newcommand{\tset}[3]{\{#1\lr{\vec{#2}_1}, #1\lr{\vec{#2}_2}, \dots, #1\lr{\vec{#2}_{#3}}\}}
% sum transformed vector set
\newcommand{\tsetcsum}[4]{{#1}_1#2(\vec{#3}_1) + {#1}_2#2(\vec{#3}_2) + \cdots + {#1}_{#4}#2(\vec{#3}_{#4})}
\newcommand{\tsetcsumall}[4]{#2\lr{{#1}_1\vec{#3}_1 + {#1}_2\vec{#3}_2 + \cdots + {#1}_{#4}\vec{#3}_{#4}}}
\newcommand{\cvecsum}[3]{{#1}_1\vec{#2}_1 + {#1}_2\vec{#2}_2 + \cdots + {#1}_{#3}\vec{#2}_{#3}}
% function def
\newcommand{\fndef}[3]{#1:#2 \to #3}
% vector set
\newcommand{\vset}[2]{\{\vec{#1}_1, \vec{#1}_2, \dots, \vec{#1}_{#2}\}}
% absolute value
\newcommand{\abs}[1]{\left| #1 \right|}
% vector norm
\newcommand{\norm}[1]{\left|\left| #1 \right|\right|}
% trans
\newcommand{\trans}{\mapsto}
% evaluate integral
\newcommand{\evalint}[3]{\left. #1 \right|_{#2}^{#3}}
% slist
\newcommand{\slist}[2]{{#1}_{1},{#1}_{2},\dots,{#1}_{#2}}
% vectors
\newcommand{\vc}[1]{\textbf{#1}}
% real
\newcommand{\Real}[1]{{\Re \mit{e}\left\{{#1}\right\}}}
% imaginary
\newcommand{\Imag}[1]{{\Im \mit{m}\left\{{#1}\right\}}}
\newcommand{\mcal}[1]{\mathcal{#1}}
\newcommand{\bb}[1]{\mathbb{#1}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\I}{\mathbb{I}}
\newcommand{\Th}[1]{\mathop\mathrm{Th(#1)}}
\newcommand{\intersect}{\cap}
\newcommand{\union}{\cup}
\newcommand{\intersectop}{\bigcap}
\newcommand{\unionop}{\bigcup}
\newcommand{\setdiff}{\backslash}
\newcommand{\iso}{\cong}
\newcommand{\aut}[1]{\mathop{\mathrm{Aut(#1)}}}
\newcommand{\inn}[1]{\mathop{\mathrm{Inn(#1)}}}
\newcommand{\Ann}[1]{\mathop{\mathrm{Ann(#1)}}}
\newcommand{\dom}[1]{\mathop{\mathrm{dom} #1}}
\newcommand{\cod}[1]{\mathop{\mathrm{cod} #1}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\st}{\ |\ }
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\enclose}[1]{\left\langle #1\right\rangle}
\newcommand{\lr}[1]{\left( #1\right)}
\newcommand{\lrsq}[1]{\left[ #1\right]}
\newcommand{\op}{\mathrm{op}}
\newcommand{\dotarr}{\dot{\rightarrow}}
%Category Names:
\newcommand{\Grp}{\mathbf{Grp}}
\newcommand{\Ab}{\mathbf{Ab}}
\newcommand{\Set}{\mathbf{Set}}
\newcommand{\Matr}{\mathbf{Matr}}
\newcommand{\IntDom}{\mathbf{IntDom}}
\newcommand{\Field}{\mathbf{Field}}
\newcommand{\Vect}{\mathbf{Vect}}
\newcommand{\thm}[1]{\begin{theorem} #1 \end{theorem}}
\newcommand{\clm}[1]{\begin{claim} #1 \end{claim}}
\newcommand{\cor}[1]{\begin{corollary} #1 \end{corollary}}
\newcommand{\ex}[1]{\begin{example} #1 \end{example}}
\newcommand{\prf}[1]{\begin{proof} #1 \end{proof}}
\newcommand{\prbm}[1]{\begin{problem} #1 \end{problem}}
\newcommand{\soln}[1]{\begin{solution} #1 \end{solution}}
\newcommand{\rmk}[1]{\begin{remark} #1 \end{remark}}
\newcommand{\defn}[1]{\begin{definition} #1 \end{definition}}
\newcommand{\ifff}{\LeftRightArrow}
<!-- For the set of reals and integers -->
\newcommand{\rr}{\R}
\newcommand{\reals}{\R}
\newcommand{\ii}{\Z}
\newcommand{\cc}{\C}
\newcommand{\nn}{\N}
\newcommand{\nats}{\N}
<!-- For terms being indexed.
Puts them in standard font face and creates an index entry.
arg: The term being defined.
\newcommand{\pointer}[1]{#1\index{#1}} -->
<!-- For bold terms to be index, but defined elsewhere
Puts them in bold face and creates an index entry.
arg: The term being defined. -->
\newcommand{\strong}[1]{\textbf{#1}}
<!-- For set names.
Puts them in italics. In math mode, yields decent spacing.
arg: The name of the set. -->
\newcommand{\set}[1]{\textit{#1}}
$$
@article{htmlleads,
Abstract = {The article considers HyperText Markup Language (HTML) 5, a new standard for the HTML document markup language. HTML5's status as a single specification for a markup language which also incorporates different tenchnologies such as a standard for accessing and manipulating HTML documents, a language to define the appearance of HTML documents and the Javascript computer programming scripting language is considered. HTML5 is examined as part of an overall trend in which the World Wide Web has evolved from a connection of static documents into a platform for application softwares.},
ISSN = {00010782},
Journal = {Communications of the ACM},
Keywords = {HYPERTEXT systems, DOCUMENT markup languages, HTML (Document markup language), JAVASCRIPT (Computer program language), PROGRAMMING languages (Electronic computers), SCRIPTING languages (Computer science)},
Number = {7},
Pages = {16 - 17},
Title = {HTML5 Leads a Web Revolution.},
Volume = {55},
Year = {2012},
}